Optimisation des Analyses Supply Chain avec l'IA et BigQuery

Ce workflow innovant utilise l'intelligence artificielle pour automatiser les requêtes SQL sur BigQuery, optimisant ainsi les analyses de la chaîne d'approvisionnement. Grâce à un agent AI spécialisé, il exécute des requêtes complexes et fournit des résultats structurés et concis, permettant aux entreprises de prendre des décisions basées sur des données en temps réel. Ce processus réduit considérablement le temps nécessaire pour extraire des insights pertinents, améliorant ainsi l'efficacité opérationnelle et la précision analytique.

57,478 vues
11,780 copies
Data

Documentation Complète

📋 Optimisation des Analyses Supply Chain avec l'IA et BigQuery

💡 Description

Ce workflow innovant utilise l'intelligence artificielle pour automatiser les requêtes SQL sur BigQuery, optimisant ainsi les analyses de la chaîne d'approvisionnement. Grâce à un agent AI spécialisé, il exécute des requêtes complexes et fournit des résultats structurés et concis, permettant aux entreprises de prendre des décisions basées sur des données en temps réel. Ce processus réduit considérablement le temps nécessaire pour extraire des insights pertinents, améliorant ainsi l'efficacité opérationnelle et la précision analytique.

📈 Impact & ROI: Accélère le processus décisionnel en fournissant rapidement des insights précis, augmentant ainsi la réactivité et l'efficacité de la chaîne d'approvisionnement.

🚀 Fonctionnalités Clés

  • ✅ Automatisation des requêtes SQL - Réduit les tâches manuelles
  • ✅ Résultats de données structurés - Facilite l'analyse rapide
  • ✅ Intégration avec OpenAI - Améliore la précision des prédictions
  • ✅ Scalabilité - S'adapte aux besoins croissants de données

📊 Architecture Technique

12
Nodes
6
Connexions
3
Services

🔌 Services Intégrés

OpenAIGoogle BigQueryn8n

🔧 Composition du Workflow

NodeTypeDescription
OpenAI Chat Model@n8n/n8n-nodes-langchain.lmChatOpenAiTraitement des données
AI Control Tower Agent@n8n/n8n-nodes-langchain.agentTraitement des données
Sticky Note1stickyNoteTraitement des données
Sticky Note2stickyNoteTraitement des données
Call Query Tool@n8n/n8n-nodes-langchain.toolWorkflowTraitement des données
Sticky NotestickyNoteTraitement des données
Query DatabasegoogleBigQueryTraitement des données
Trigger Executed by the AI ToolexecuteWorkflowTriggerTraitement des données
Sanitising the QuerycodeTraitement des données
Chat Memory@n8n/n8n-nodes-langchain.memoryBufferWindowTraitement des données
Chat with the User@n8n/n8n-nodes-langchain.chatTriggerTraitement des données
Sticky Note3stickyNoteTraitement des données

📖 Guide d'Implémentation

  1. Import du workflow: Téléchargez le fichier JSON et importez-le dans votre instance n8n
  2. Configuration des credentials: Configurez les accès pour chaque service utilisé
  3. Personnalisation: Adaptez les paramètres selon vos besoins spécifiques
  4. Test: Exécutez le workflow en mode test pour vérifier le bon fonctionnement
  5. Activation: Activez le workflow pour une exécution automatique

🏷️ Tags

BigQuerySupply ChainAI

Structure JSON

Voir le code JSON complet
{
    "meta": {
        "instanceId": "6a5e68bcca67c4cdb3e0b698d01739aea084e1ec06e551db64aeff43d174cb23"
    },
    "nodes": [
        {
            "id": "53b36910-966f-45ba-a425-a3260a55059f",
            "name": "OpenAI Chat Model",
            "type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
            "position": [
                340,
                480
            ],
            "parameters": {
                "model": {
                    "__rl": true,
                    "mode": "list",
                    "value": "gpt-4o-mini"
                },
                "options": []
            },
            "typeVersion": 1.2
        },
        {
            "id": "177235e8-c925-43d0-9695-10f072e26350",
            "name": "AI Control Tower Agent",
            "type": "@n8n\/n8n-nodes-langchain.agent",
            "position": [
                380,
                240
            ],
            "parameters": {
                "options": {
                    "systemMessage": "=You are an AI-powered SQL assistant specialized in supply chain analytics. \nYour role is to execute SQL queries on BigQuery and return only the results in a structured format.\n\nToday we are May 31, 2021.\n\n### **Behavior & Rules**\n1️⃣ **Query Execution:**\n   - Your only task is to process user requests and return **direct results** from BigQuery.\n   - Do **not** display the SQL query.\n   - Only return structured **data** as output.\n\n2️⃣ **Data Presentation:**\n   - Format the results as a **table** whenever possible.\n   - If results are numerical (counts, percentages, aggregates), return them **clearly and concisely**.\n   - If results contain multiple rows, return **only the first 10** for preview, unless the user specifies otherwise.\n\n3️⃣ **Handling Large Datasets:**\n   - If the user asks for many rows, show the first **100 rows max** unless specified.\n   - Provide a **summary** when dealing with large data instead of showing everything.\n\n4️⃣ **Response Format:**\n   - ✅ **For counts & metrics:**  \n     `\"There were 5,432 delayed shipments in the last 21 days.\"`\n   - ✅ **For tables:**  \n     | ShipmentID | City  | Store  | Order Date | Delivery Date | On Time? |\n     |-----------|-------|--------|------------|--------------|----------|\n     | 12345     | NYC   | ST1    | 2024-03-10 | 2024-03-15   | No       |\n     | 67890     | Paris | ST4    | 2024-03-11 | 2024-03-16   | Yes      |\n\n5️⃣ **Clarifying Unclear Requests:**\n   - If the user request is **too broad**, ask for clarification instead of running an expensive query.\n\n---\n\n### Schema Awareness\nAll SQL queries must use the BigQuery table:  \n`transport.shipments`  \n\nThis table includes fields such as:\n- `Shipment ID`, `City`, `Store`, `Order Date`, `Delivery Date`, `On Time Delivery`\n- As well as operational timestamps: `Transmission`, `Loading`, `Airport Arrival`, etc.\n- And status flags: `Transmission OnTime`, `Loading OnTime`, `Airport OnTime`, `Store Open`\n\nUse these fields appropriately when analyzing shipment performance.\n\n---\n\n### Tool Usage Instruction (for \"bigquery_tool\")\n\nWhenever you need to run a SQL query, use the tool called `bigquery_tool`.\n\nYou must provide the query in the following format:\n```json\n{\n  \"query\": \"SELECT COUNT(*) FROM `transport.shipments` WHERE `On Time Delivery` = FALSE\"\n}\n"
                }
            },
            "typeVersion": 1.8
        },
        {
            "id": "5366cc5f-85d3-44d2-9b1b-62febfcb44e3",
            "name": "Sticky Note1",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                -100,
                -120
            ],
            "parameters": {
                "color": 7,
                "width": 200,
                "height": 520,
                "content": "### 1. Workflow Trigger with Chat\nThis workflow uses a simple chat window as a trigger. You can replace it with Telegram, Slack, Teams or a webhook trigger linked to your chat.\n\n#### How to setup?\n*Nothing to do.*\n"
            },
            "typeVersion": 1
        },
        {
            "id": "4218a062-12f8-437d-ab22-5a653a3089b2",
            "name": "Sticky Note2",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                140,
                -120
            ],
            "parameters": {
                "color": 7,
                "width": 700,
                "height": 740,
                "content": "### 2. AI Agent equipped with the query tool\nIn order to have more control on the input of the BigQuery node, we don't use the BigQuery tool. Instead we have a set of nodes to retrieve the SQL query, clean it and send it to a BigQuery Node.\n\n#### How to setup?\n- **AI Agent with the Chat Model**:\n   1. Add a **chat model** with the required credentials *(Example: Open AI 4o-mini)*\n   2. Adapt the **name of your BigQuery table** in the system prompt *(Example: transports.shipments)*\n   3. Adapt the **tables fields explanation** in the system prompt\n  [Learn more about the AI Agent Node](https:\/\/docs.n8n.io\/integrations\/builtin\/cluster-nodes\/root-nodes\/n8n-nodes-langchain.agent)\n- Copy and past the **nodes in the yellow sticker** in another workflow. Point the query tool to this workflow.\n[Learn more about the Custom n8n Workflow Tool node](https:\/\/docs.n8n.io\/integrations\/builtin\/cluster-nodes\/sub-nodes\/n8n-nodes-langchain.toolworkflow)"
            },
            "typeVersion": 1
        },
        {
            "id": "c5967f58-00e8-4f03-9110-913547f7ab9c",
            "name": "Call Query Tool",
            "type": "@n8n\/n8n-nodes-langchain.toolWorkflow",
            "position": [
                640,
                440
            ],
            "parameters": {
                "name": "bigquery_tool",
                "workflowId": {
                    "__rl": true,
                    "mode": "list",
                    "value": "4Os7DoxHjFuTwWio",
                    "cachedResultName": "🔨 Big Query Tool"
                },
                "description": "=Use this tool to run an SQL query and fetch the result from the BigQuery database.\n\nThe tool expects input in the following format:\n{\n  \"query\": \"SELECT COUNT(*) FROM `transport.shipments` WHERE `On Time Delivery` = FALSE\"\n}\n\nOnly provide the SQL query as a string inside the 'query' key. Do not include code formatting (like ```sql), comments, or explanations. The tool will return only the raw result from the database.\n",
                "workflowInputs": {
                    "value": {
                        "query": "={{ $fromAI(\"query\", \"SQL query to run\") }}"
                    },
                    "schema": [
                        {
                            "id": "query",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "query",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        }
                    ],
                    "mappingMode": "defineBelow",
                    "matchingColumns": [
                        "query"
                    ],
                    "attemptToConvertTypes": false,
                    "convertFieldsToString": false
                }
            },
            "typeVersion": 2
        },
        {
            "id": "429813c8-b07f-4551-aeea-1744a1225449",
            "name": "Sticky Note",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                900,
                -120
            ],
            "parameters": {
                "width": 760,
                "height": 460,
                "content": "### 3. Big Query Workflow\nExecute the SQL query generated by the AI agent in Big Query. Retrieve the results and send them back to the AI Agent.\n\n### How to set up?\n- Paste these nodes in a separate workflow so you can use it with multiple agents.\n- **Google BigQuery API**:\n   1. Add your Google Translate API credentials\n   2. The project in which your table is located\n  [Learn more about the Google BigQuery Node](https:\/\/docs.n8n.io\/integrations\/builtin\/app-nodes\/n8n-nodes-base.googlebigquery)\n"
            },
            "typeVersion": 1
        },
        {
            "id": "bede0624-8923-4af0-8adc-8be22d556066",
            "name": "Query Database",
            "type": "n8n-nodes-base.googleBigQuery",
            "position": [
                1520,
                180
            ],
            "parameters": {
                "options": [],
                "sqlQuery": "={{ $json.query }}",
                "projectId": {
                    "__rl": true,
                    "mode": "list",
                    "value": "=",
                    "cachedResultUrl": "=",
                    "cachedResultName": "="
                }
            },
            "notesInFlow": true,
            "typeVersion": 2.1
        },
        {
            "id": "137e4dbc-db8d-4ec7-a3e0-478dde6ef27c",
            "name": "Trigger Executed by the AI Tool",
            "type": "n8n-nodes-base.executeWorkflowTrigger",
            "position": [
                960,
                180
            ],
            "parameters": {
                "workflowInputs": {
                    "values": [
                        {
                            "name": "query"
                        }
                    ]
                }
            },
            "typeVersion": 1.1
        },
        {
            "id": "42a2801e-582e-4340-83af-ef0041eab4f9",
            "name": "Sanitising the Query",
            "type": "n8n-nodes-base.code",
            "position": [
                1240,
                180
            ],
            "parameters": {
                "jsCode": "return [\n  {\n    json: {\n      query: $input.first().json.query.replace(\/```sql|```\/g, \"\").trim()\n    }\n  }\n];\n"
            },
            "typeVersion": 2
        },
        {
            "id": "7c86fda0-116c-47ad-aaf5-8b83d2c083c6",
            "name": "Chat Memory",
            "type": "@n8n\/n8n-nodes-langchain.memoryBufferWindow",
            "position": [
                480,
                480
            ],
            "parameters": [],
            "typeVersion": 1.3
        },
        {
            "id": "e1408ac1-24da-4d38-8fdf-c110a54d3f55",
            "name": "Chat with the User",
            "type": "@n8n\/n8n-nodes-langchain.chatTrigger",
            "position": [
                -60,
                240
            ],
            "webhookId": "ee7c418b-d7d6-41f9-8e87-0f71b8ae1cf9",
            "parameters": {
                "options": []
            },
            "typeVersion": 1.1
        },
        {
            "id": "bc49829b-45f2-4910-9c37-907271982f14",
            "name": "Sticky Note3",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                900,
                380
            ],
            "parameters": {
                "width": 780,
                "height": 540,
                "content": "### 4. Do you need more details?\nFind a step-by-step guide in this tutorial\n![Guide](https:\/\/www.samirsaci.com\/content\/images\/2025\/04\/image.png)\n[🎥 Watch My Tutorial](https:\/\/www.loom.com\/share\/50271f9d50214d7184830985497a75ec?sid=d0c410dc-29f1-488f-b89a-4011de0ded07)"
            },
            "typeVersion": 1
        }
    ],
    "pinData": [],
    "connections": {
        "Chat Memory": {
            "ai_memory": [
                [
                    {
                        "node": "AI Control Tower Agent",
                        "type": "ai_memory",
                        "index": 0
                    }
                ]
            ]
        },
        "Call Query Tool": {
            "ai_tool": [
                [
                    {
                        "node": "AI Control Tower Agent",
                        "type": "ai_tool",
                        "index": 0
                    }
                ]
            ]
        },
        "OpenAI Chat Model": {
            "ai_languageModel": [
                [
                    {
                        "node": "AI Control Tower Agent",
                        "type": "ai_languageModel",
                        "index": 0
                    }
                ]
            ]
        },
        "Chat with the User": {
            "main": [
                [
                    {
                        "node": "AI Control Tower Agent",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Sanitising the Query": {
            "main": [
                [
                    {
                        "node": "Query Database",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Trigger Executed by the AI Tool": {
            "main": [
                [
                    {
                        "node": "Sanitising the Query",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        }
    }
}
                                

Workflows Similaires

Comprehensive n8n Creator Stats Automation Workflow

Automate the reporting of top n8n creators and workflows with this powerful workflow. By aggregating data from GitHub, g...

Analyse Automatisée des États Américains par l'IA

Ce workflow n8n permet d'analyser automatiquement les plus grands états des USA en termes de superficie, en listant leu...

Automatisez l'import de CSV vers Excel en toute simplicité

Ce workflow n8n simplifie la conversion de fichiers CSV en fichiers Excel (.xlsx), un processus essentiel pour les profe...