Automatisez le Résumé de Vos Emails avec A.I. et Messagerie
Ce workflow n8n vous permet d'automatiser la gestion de vos emails en utilisant l'intelligence artificielle pour résume...
Ce workflow automatisé transforme vos documents Google Drive en données exploitables en les intégrant dans une base de vecteurs Pinecone. Utilisant les technologies avancées d'OpenRouter et de Google Gemini, il segmente les documents en sections contextuelles pour améliorer la recherche et le traitement des informations. Cela permet aux entreprises de gérer efficacement de grands volumes de données textuelles, augmentant ainsi la productivité et la précision des recherches. En simplifiant le processus d'intégration de données complexes, ce workflow offre une solution robuste pour l'analyse contextuelle à grande échelle.
Ce workflow automatisé transforme vos documents Google Drive en données exploitables en les intégrant dans une base de vecteurs Pinecone. Utilisant les technologies avancées d'OpenRouter et de Google Gemini, il segmente les documents en sections contextuelles pour améliorer la recherche et le traitement des informations. Cela permet aux entreprises de gérer efficacement de grands volumes de données textuelles, augmentant ainsi la productivité et la précision des recherches. En simplifiant le processus d'intégration de données complexes, ce workflow offre une solution robuste pour l'analyse contextuelle à grande échelle.
Node | Type | Description |
---|---|---|
When clicking ‘Test workflow’ | manualTrigger | Traitement des données |
Loop Over Items | splitInBatches | Division des données en plusieurs branches |
OpenRouter Chat Model | @n8n/n8n-nodes-langchain.lmChatOpenRouter | Traitement des données |
Pinecone Vector Store | @n8n/n8n-nodes-langchain.vectorStorePinecone | Traitement des données |
Embeddings Google Gemini | @n8n/n8n-nodes-langchain.embeddingsGoogleGemini | Traitement des données |
Default Data Loader | @n8n/n8n-nodes-langchain.documentDefaultDataLoader | Traitement des données |
Recursive Character Text Splitter | @n8n/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter | Division des données en plusieurs branches |
Get Document From Google Drive | googleDrive | Traitement des données |
Extract Text Data From Google Document | extractFromFile | Traitement des données |
Split Document Text Into Sections | code | Traitement des données |
Prepare Sections For Looping | splitOut | Division des données en plusieurs branches |
Sticky Note | stickyNote | Traitement des données |
Sticky Note1 | stickyNote | Traitement des données |
AI Agent - Prepare Context | @n8n/n8n-nodes-langchain.agent | Traitement des données |
Concatenate the context and section text | set | Traitement des données |
Sticky Note2 | stickyNote | Traitement des données |
Sticky Note3 | stickyNote | Traitement des données |
{
"id": "VY4WBXuNDPxmOO5e",
"meta": {
"instanceId": "d16fb7d4b3eb9b9d4ad2ee6a7fbae593d73e9715e51f583c2a0e9acd1781c08e",
"templateCredsSetupCompleted": true
},
"name": "RAG:Context-Aware Chunking | Google Drive to Pinecone via OpenRouter & Gemini",
"tags": [
{
"id": "XZIQK6NdzGvgbZFd",
"name": "Sell",
"createdAt": "2025-01-15T12:28:48.424Z",
"updatedAt": "2025-01-15T12:28:48.424Z"
}
],
"nodes": [
{
"id": "7abbfa6e-4b17-4656-9b82-377b1bacf539",
"name": "When clicking ‘Test workflow’",
"type": "n8n-nodes-base.manualTrigger",
"position": [
0,
0
],
"parameters": [],
"typeVersion": 1
},
{
"id": "448ec137-bf64-46b4-bf15-c7a040faa306",
"name": "Loop Over Items",
"type": "n8n-nodes-base.splitInBatches",
"position": [
1100,
0
],
"parameters": {
"options": []
},
"typeVersion": 3
},
{
"id": "f22557ee-7f37-40cd-9063-a9a759274663",
"name": "OpenRouter Chat Model",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenRouter",
"position": [
20,
440
],
"parameters": {
"options": []
},
"credentials": {
"openRouterApi": {
"id": "ddH6iNlm09UxrXvu",
"name": "Auto: OpenRouter"
}
},
"typeVersion": 1
},
{
"id": "57e8792e-25ae-43d5-b4e9-e87642365ee9",
"name": "Pinecone Vector Store",
"type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
"position": [
780,
360
],
"parameters": {
"mode": "insert",
"options": [],
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "context-rag-test",
"cachedResultName": "context-rag-test"
}
},
"credentials": {
"pineconeApi": {
"id": "R3QGXSEIRTEAZttK",
"name": "Auto: PineconeApi"
}
},
"typeVersion": 1
},
{
"id": "0a8c2426-0aaf-424a-b246-336a9034aba8",
"name": "Embeddings Google Gemini",
"type": "@n8n\/n8n-nodes-langchain.embeddingsGoogleGemini",
"position": [
720,
540
],
"parameters": {
"modelName": "models\/text-embedding-004"
},
"credentials": {
"googlePalmApi": {
"id": "9idxGZRZ3BAKDoxq",
"name": "Google Gemini(PaLM) Api account"
}
},
"typeVersion": 1
},
{
"id": "edc587bd-494d-43e8-b6d6-26adab7af3dc",
"name": "Default Data Loader",
"type": "@n8n\/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
920,
540
],
"parameters": {
"options": []
},
"typeVersion": 1
},
{
"id": "a82d4e0b-248e-426d-9ef3-f25e7078ceb3",
"name": "Recursive Character Text Splitter",
"type": "@n8n\/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
840,
680
],
"parameters": {
"options": [],
"chunkSize": 100000
},
"typeVersion": 1
},
{
"id": "8571b92f-5587-454f-9700-ea04ca35311b",
"name": "Get Document From Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
220,
0
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "list",
"value": "1gm0jxFTLuiWB5u4esEjzoCPImrVqu0AEMIKBIesTf9M",
"cachedResultUrl": "https:\/\/docs.google.com\/document\/d\/1gm0jxFTLuiWB5u4esEjzoCPImrVqu0AEMIKBIesTf9M\/edit?usp=drivesdk",
"cachedResultName": "Udit Rawat - Details"
},
"options": {
"googleFileConversion": {
"conversion": {
"docsToFormat": "text\/plain"
}
}
},
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "SsiQguNA8w3Wwv4w",
"name": "Auto: Google Drive"
}
},
"typeVersion": 3
},
{
"id": "2bed3d0f-3d65-4394-87f1-e73320a43a4a",
"name": "Extract Text Data From Google Document",
"type": "n8n-nodes-base.extractFromFile",
"position": [
440,
0
],
"parameters": {
"options": [],
"operation": "text"
},
"typeVersion": 1
},
{
"id": "837fa691-6c66-434b-ba82-d1cad9aecdf7",
"name": "Split Document Text Into Sections",
"type": "n8n-nodes-base.code",
"position": [
660,
0
],
"parameters": {
"jsCode": "let split_text = \"—---------------------------—-------------[SECTIONEND]—---------------------------—-------------\";\nfor (const item of $input.all()) {\n item.json.section = item.json.data.split(split_text);\n item.json.document = JSON.stringify(item.json.section)\n}\nreturn $input.all();"
},
"typeVersion": 2
},
{
"id": "cc801e7e-e01b-421a-9211-08322ef8a0b2",
"name": "Prepare Sections For Looping",
"type": "n8n-nodes-base.splitOut",
"position": [
880,
0
],
"parameters": {
"options": [],
"fieldToSplitOut": "section"
},
"typeVersion": 1
},
{
"id": "658cb8df-92e3-4b25-8f37-e5f959d913dc",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-40,
-100
],
"parameters": {
"width": 1300,
"height": 280,
"content": "## Prepare Document. \nThis section is responsible for downloading the file from Google Drive, splitting the text into sections by detecting separators, and preparing them for looping."
},
"typeVersion": 1
},
{
"id": "82ee9194-484a-46db-b75c-bec34201c7e2",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-220,
220
],
"parameters": {
"width": 780,
"height": 360,
"content": "## Prepare context\nIn this section, the \nagent node will prepare \ncontext for a section \n(chunk of text), which \nwill then be passed for \nconversion into a vectors \nalong with the section itself."
},
"typeVersion": 1
},
{
"id": "2f6950df-ead1-479a-aa51-7768121a4eb2",
"name": "AI Agent - Prepare Context",
"type": "@n8n\/n8n-nodes-langchain.agent",
"position": [
40,
260
],
"parameters": {
"text": "=<document> \n{{ $('Split Document Text Into Sections').item.json.document }}\n<\/document> \nHere is the chunk we want to situate within the whole document \n<chunk> \n{{ $json.section }}\n<\/chunk> \nPlease give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else. ",
"agent": "conversationalAgent",
"options": [],
"promptType": "define"
},
"typeVersion": 1.7
},
{
"id": "34a465fc-a505-445a-9211-bcd830381354",
"name": "Concatenate the context and section text",
"type": "n8n-nodes-base.set",
"position": [
400,
260
],
"parameters": {
"options": [],
"assignments": {
"assignments": [
{
"id": "e5fb0381-5d23-46e2-a0d1-438240b80a3e",
"name": "=section_chunk",
"type": "string",
"value": "={{ $json.output }}. {{ $('Loop Over Items').item.json.section }}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "4a7a788c-8e5b-453c-ae52-a4522048992d",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
640,
220
],
"parameters": {
"width": 580,
"height": 600,
"content": "## Convert Text To Vectors\nIn this step, the Pinecone node converts the provided text into vectors using Google Gemini and stores them in the Pinecone vector database."
},
"typeVersion": 1
},
{
"id": "45798b49-fc78-417c-a752-4dd1a8882cd7",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
-460,
-120
],
"parameters": {
"width": 400,
"height": 300,
"content": "## Video Demo\n[](https:\/\/www.youtube.com\/watch?v=qBeWP65I4hg)"
},
"typeVersion": 1
}
],
"active": false,
"pinData": [],
"settings": {
"executionOrder": "v1"
},
"versionId": "4f0e2203-5850-4a32-b1dd-5adc57fa43ff",
"connections": {
"Loop Over Items": {
"main": [
[],
[
{
"node": "AI Agent - Prepare Context",
"type": "main",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"OpenRouter Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent - Prepare Context",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Pinecone Vector Store": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Embeddings Google Gemini": {
"ai_embedding": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"AI Agent - Prepare Context": {
"main": [
[
{
"node": "Concatenate the context and section text",
"type": "main",
"index": 0
}
]
]
},
"Prepare Sections For Looping": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Get Document From Google Drive": {
"main": [
[
{
"node": "Extract Text Data From Google Document",
"type": "main",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"Split Document Text Into Sections": {
"main": [
[
{
"node": "Prepare Sections For Looping",
"type": "main",
"index": 0
}
]
]
},
"When clicking ‘Test workflow’": {
"main": [
[
{
"node": "Get Document From Google Drive",
"type": "main",
"index": 0
}
]
]
},
"Extract Text Data From Google Document": {
"main": [
[
{
"node": "Split Document Text Into Sections",
"type": "main",
"index": 0
}
]
]
},
"Concatenate the context and section text": {
"main": [
[
{
"node": "Pinecone Vector Store",
"type": "main",
"index": 0
}
]
]
}
}
}
Ce workflow n8n vous permet d'automatiser la gestion de vos emails en utilisant l'intelligence artificielle pour résume...
Ce workflow est conçu pour automatiser le processus de planification et de gestion des réunions Zoom tout en assurant ...
Ce workflow n8n est conçu pour les professionnels des réseaux sociaux cherchant à automatiser leur contenu humoristiq...