Automatisez le Résumé de Vos Emails avec A.I. et Messagerie
Ce workflow n8n vous permet d'automatiser la gestion de vos emails en utilisant l'intelligence artificielle pour résume...
Ce workflow automatise la collecte et l'analyse des articles publiés sur Hugging Face, en les intégrant directement dans une base de données Notion pour une gestion efficace des informations. Il s'exécute quotidiennement pour extraire les derniers articles, analyse leur contenu à l'aide d'OpenAI pour en tirer des insights pertinents, et les stocke dans Notion. Cela permet aux équipes de recherche et développement de rester à jour avec les dernières innovations en intelligence artificielle sans effort manuel, optimisant ainsi le temps passé sur la veille technologique.
Ce workflow automatise la collecte et l'analyse des articles publiés sur Hugging Face, en les intégrant directement dans une base de données Notion pour une gestion efficace des informations. Il s'exécute quotidiennement pour extraire les derniers articles, analyse leur contenu à l'aide d'OpenAI pour en tirer des insights pertinents, et les stocke dans Notion. Cela permet aux équipes de recherche et développement de rester à jour avec les dernières innovations en intelligence artificielle sans effort manuel, optimisant ainsi le temps passé sur la veille technologique.
Node | Type | Description |
---|---|---|
Schedule Trigger | scheduleTrigger | Traitement des données |
If | if | Condition logique pour router le flux |
Loop Over Items | splitInBatches | Division des données en plusieurs branches |
Split Out | splitOut | Division des données en plusieurs branches |
Request Hugging Face Paper | httpRequest | Requête HTTP vers une API externe |
Extract Hugging Face Paper | html | Traitement des données |
Check Paper URL Existed | notion | Traitement des données |
Request Hugging Face Paper Detail | httpRequest | Requête HTTP vers une API externe |
OpenAI Analysis Abstract | @n8n/n8n-nodes-langchain.openAi | Traitement des données |
Store Abstract Notion | notion | Traitement des données |
Extract Hugging Face Paper Abstract | html | Traitement des données |
{
"id": "FU3MrLkaTHmfdG4n",
"meta": {
"instanceId": "3294023dd650d95df294922b9d55d174ef26f4a2e6cce97c8a4ab5f98f5b8c7b",
"templateCredsSetupCompleted": true
},
"name": "Hugging Face to Notion",
"tags": [],
"nodes": [
{
"id": "32d5bfee-97f1-4e92-b62e-d09bdd9c3821",
"name": "Schedule Trigger",
"type": "n8n-nodes-base.scheduleTrigger",
"position": [
-2640,
-300
],
"parameters": {
"rule": {
"interval": [
{
"field": "weeks",
"triggerAtDay": [
1,
2,
3,
4,
5
],
"triggerAtHour": 8
}
]
}
},
"typeVersion": 1.2
},
{
"id": "b1f4078e-ac77-47ec-995c-f52fd98fafef",
"name": "If",
"type": "n8n-nodes-base.if",
"position": [
-1360,
-280
],
"parameters": {
"options": [],
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "7094d6db-1fa7-4b59-91cf-6bbd5b5f067e",
"operator": {
"type": "object",
"operation": "empty",
"singleValue": true
},
"leftValue": "={{ $json }}",
"rightValue": ""
}
]
}
},
"typeVersion": 2.2
},
{
"id": "afac08e1-b629-4467-86ef-907e4a5e8841",
"name": "Loop Over Items",
"type": "n8n-nodes-base.splitInBatches",
"position": [
-1760,
-300
],
"parameters": {
"options": {
"reset": false
}
},
"typeVersion": 3
},
{
"id": "807ba450-9c89-4f88-aa84-91f43e3adfc6",
"name": "Split Out",
"type": "n8n-nodes-base.splitOut",
"position": [
-1960,
-300
],
"parameters": {
"options": [],
"fieldToSplitOut": "url, url"
},
"typeVersion": 1
},
{
"id": "08dd3f15-2030-48f2-ab0f-f85f797268e1",
"name": "Request Hugging Face Paper",
"type": "n8n-nodes-base.httpRequest",
"position": [
-2440,
-300
],
"parameters": {
"url": "https:\/\/huggingface.co\/papers",
"options": [],
"sendQuery": true,
"queryParameters": {
"parameters": [
{
"name": "date",
"value": "={{ $now.minus(1,'days').format('yyyy-MM-dd') }}"
}
]
}
},
"typeVersion": 4.2
},
{
"id": "f37ba769-d881-4aad-927d-ca1f4a68b9a1",
"name": "Extract Hugging Face Paper",
"type": "n8n-nodes-base.html",
"position": [
-2200,
-300
],
"parameters": {
"options": [],
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "url",
"attribute": "href",
"cssSelector": ".line-clamp-3",
"returnArray": true,
"returnValue": "attribute"
}
]
}
},
"typeVersion": 1.2
},
{
"id": "94ba99bf-a33b-4311-a4e6-86490e1bb9ad",
"name": "Check Paper URL Existed",
"type": "n8n-nodes-base.notion",
"position": [
-1540,
-280
],
"parameters": {
"filters": {
"conditions": [
{
"key": "URL|url",
"urlValue": "={{ 'https:\/\/huggingface.co'+$json.url }}",
"condition": "equals"
}
]
},
"options": [],
"resource": "databasePage",
"operation": "getAll",
"databaseId": {
"__rl": true,
"mode": "list",
"value": "17b67aba-1fcc-80ae-baa1-d88ffda7ae83",
"cachedResultUrl": "https:\/\/www.notion.so\/17b67aba1fcc80aebaa1d88ffda7ae83",
"cachedResultName": "huggingface-abstract"
},
"filterType": "manual"
},
"credentials": {
"notionApi": {
"id": "I5KdUzwhWnphQ862",
"name": "notion"
}
},
"typeVersion": 2.2,
"alwaysOutputData": true
},
{
"id": "ece8dee2-e444-4557-aad9-5bdcb5ecd756",
"name": "Request Hugging Face Paper Detail",
"type": "n8n-nodes-base.httpRequest",
"position": [
-1080,
-300
],
"parameters": {
"url": "={{ 'https:\/\/huggingface.co'+$('Split Out').item.json.url }}",
"options": []
},
"typeVersion": 4.2
},
{
"id": "53b266fe-e7c4-4820-92eb-78a6ba7a6430",
"name": "OpenAI Analysis Abstract",
"type": "@n8n\/n8n-nodes-langchain.openAi",
"position": [
-640,
-300
],
"parameters": {
"modelId": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-2024-11-20",
"cachedResultName": "GPT-4O-2024-11-20"
},
"options": [],
"messages": {
"values": [
{
"role": "system",
"content": "Extract the following key details from the paper abstract:\n\nCore Introduction: Summarize the main contributions and objectives of the paper, highlighting its innovations and significance.\nKeyword Extraction: List 2-5 keywords that best represent the research direction and techniques of the paper.\nKey Data and Results: Extract important performance metrics, comparison results, and the paper's advantages over other studies.\nTechnical Details: Provide a brief overview of the methods, optimization techniques, and datasets mentioned in the paper.\nClassification: Assign an appropriate academic classification based on the content of the paper.\n\n\nOutput as json:\n{\n \"Core_Introduction\": \"PaSa is an advanced Paper Search agent powered by large language models that can autonomously perform a series of decisions (including invoking search tools, reading papers, and selecting relevant references) to provide comprehensive and accurate results for complex academic queries.\",\n \"Keywords\": [\n \"Paper Search Agent\",\n \"Large Language Models\",\n \"Reinforcement Learning\",\n \"Academic Queries\",\n \"Performance Benchmarking\"\n ],\n \"Data_and_Results\": \"PaSa outperforms existing baselines (such as Google, GPT-4, chatGPT) in tests using AutoScholarQuery (35k academic queries) and RealScholarQuery (real-world academic queries). For example, PaSa-7B exceeds Google with GPT-4o by 37.78% in recall@20 and 39.90% in recall@50.\",\n \"Technical_Details\": \"PaSa is optimized using reinforcement learning with the AutoScholarQuery synthetic dataset, demonstrating superior performance in multiple benchmarks.\",\n \"Classification\": [\n \"Artificial Intelligence (AI)\",\n \"Academic Search and Information Retrieval\",\n \"Natural Language Processing (NLP)\",\n \"Reinforcement Learning\"\n ]\n}\n```"
},
{
"content": "={{ $json.abstract }}"
}
]
},
"jsonOutput": true
},
"credentials": {
"openAiApi": {
"id": "LmLcxHwbzZNWxqY6",
"name": "Unnamed credential"
}
},
"typeVersion": 1.8
},
{
"id": "f491cd7f-598e-46fd-b80c-04cfa9766dfd",
"name": "Store Abstract Notion",
"type": "n8n-nodes-base.notion",
"position": [
-300,
-300
],
"parameters": {
"options": [],
"resource": "databasePage",
"databaseId": {
"__rl": true,
"mode": "list",
"value": "17b67aba-1fcc-80ae-baa1-d88ffda7ae83",
"cachedResultUrl": "https:\/\/www.notion.so\/17b67aba1fcc80aebaa1d88ffda7ae83",
"cachedResultName": "huggingface-abstract"
},
"propertiesUi": {
"propertyValues": [
{
"key": "URL|url",
"urlValue": "={{ 'https:\/\/huggingface.co'+$('Split Out').item.json.url }}"
},
{
"key": "title|title",
"title": "={{ $('Extract Hugging Face Paper Abstract').item.json.title }}"
},
{
"key": "abstract|rich_text",
"textContent": "={{ $('Extract Hugging Face Paper Abstract').item.json.abstract.substring(0,2000) }}"
},
{
"key": "scrap-date|date",
"date": "={{ $today.format('yyyy-MM-dd') }}",
"includeTime": false
},
{
"key": "Classification|rich_text",
"textContent": "={{ $json.message.content.Classification.join(',') }}"
},
{
"key": "Technical_Details|rich_text",
"textContent": "={{ $json.message.content.Technical_Details }}"
},
{
"key": "Data_and_Results|rich_text",
"textContent": "={{ $json.message.content.Data_and_Results }}"
},
{
"key": "keywords|rich_text",
"textContent": "={{ $json.message.content.Keywords.join(',') }}"
},
{
"key": "Core Introduction|rich_text",
"textContent": "={{ $json.message.content.Core_Introduction }}"
}
]
}
},
"credentials": {
"notionApi": {
"id": "I5KdUzwhWnphQ862",
"name": "notion"
}
},
"typeVersion": 2.2
},
{
"id": "d5816a1c-d1fa-4be2-8088-57fbf68e6b43",
"name": "Extract Hugging Face Paper Abstract",
"type": "n8n-nodes-base.html",
"position": [
-840,
-300
],
"parameters": {
"options": [],
"operation": "extractHtmlContent",
"extractionValues": {
"values": [
{
"key": "abstract",
"cssSelector": ".text-gray-700"
},
{
"key": "title",
"cssSelector": ".text-2xl"
}
]
}
},
"typeVersion": 1.2
}
],
"active": true,
"pinData": [],
"settings": {
"executionOrder": "v1"
},
"versionId": "4b0ec2a3-253d-46d5-a4d4-1d9ff21ba4a3",
"connections": {
"If": {
"main": [
[
{
"node": "Request Hugging Face Paper Detail",
"type": "main",
"index": 0
}
],
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Split Out": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Loop Over Items": {
"main": [
[],
[
{
"node": "Check Paper URL Existed",
"type": "main",
"index": 0
}
]
]
},
"Schedule Trigger": {
"main": [
[
{
"node": "Request Hugging Face Paper",
"type": "main",
"index": 0
}
]
]
},
"Store Abstract Notion": {
"main": [
[
{
"node": "Loop Over Items",
"type": "main",
"index": 0
}
]
]
},
"Check Paper URL Existed": {
"main": [
[
{
"node": "If",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Analysis Abstract": {
"main": [
[
{
"node": "Store Abstract Notion",
"type": "main",
"index": 0
}
]
]
},
"Extract Hugging Face Paper": {
"main": [
[
{
"node": "Split Out",
"type": "main",
"index": 0
}
]
]
},
"Request Hugging Face Paper": {
"main": [
[
{
"node": "Extract Hugging Face Paper",
"type": "main",
"index": 0
}
]
]
},
"Request Hugging Face Paper Detail": {
"main": [
[
{
"node": "Extract Hugging Face Paper Abstract",
"type": "main",
"index": 0
}
]
]
},
"Extract Hugging Face Paper Abstract": {
"main": [
[
{
"node": "OpenAI Analysis Abstract",
"type": "main",
"index": 0
}
]
]
}
}
}
Ce workflow n8n vous permet d'automatiser la gestion de vos emails en utilisant l'intelligence artificielle pour résume...
Ce workflow est conçu pour automatiser le processus de planification et de gestion des réunions Zoom tout en assurant ...
Ce workflow n8n est conçu pour les professionnels des réseaux sociaux cherchant à automatiser leur contenu humoristiq...