Public Form Auto Triage
Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...
Ce workflow optimise la gestion de projets en automatisant le traitement des messages Telegram pour créer des tâches Todoist. En utilisant l'intelligence artificielle d'OpenAI, il convertit les descriptions de projets en sous-tâches structurées. Les utilisateurs bénéficient d'une gestion plus efficace des tâches, ce qui améliore la productivité et réduit le temps consacré à la planification manuelle.
Ce workflow optimise la gestion de projets en automatisant le traitement des messages Telegram pour créer des tâches Todoist. En utilisant l'intelligence artificielle d'OpenAI, il convertit les descriptions de projets en sous-tâches structurées. Les utilisateurs bénéficient d'une gestion plus efficace des tâches, ce qui améliore la productivité et réduit le temps consacré à la planification manuelle.
| Node | Type | Description |
|---|---|---|
| OpenAI Chat Model | @n8n/n8n-nodes-langchain.lmChatOpenAi | Traitement des données |
| Basic LLM Chain | @n8n/n8n-nodes-langchain.chainLlm | Traitement des données |
| Receive Telegram Messages | telegramTrigger | Traitement des données |
| Voice or Text? | switch | Traitement des données |
| Fetch Voice Message | telegram | Traitement des données |
| Transcribe Voice to Text | @n8n/n8n-nodes-langchain.openAi | Traitement des données |
| Prepare for LLM | set | Traitement des données |
| Extract Tasks | @n8n/n8n-nodes-langchain.outputParserStructured | Traitement des données |
| Create Todoist Tasks | todoist | Traitement des données |
| Send Confirmation | telegram | Traitement des données |
| Sticky Note2 | stickyNote | Traitement des données |
| Sticky Note3 | stickyNote | Traitement des données |
| Sticky Note4 | stickyNote | Traitement des données |
{
"meta": {
"instanceId": "b41148c809c7896d124743d940fc0964703e540af66564ef95e25a4ceea61c77",
"templateCredsSetupCompleted": true
},
"nodes": [
{
"id": "e87d3723-7e7a-4ff3-bffb-b2bd2096bd34",
"name": "OpenAI Chat Model",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1080,
260
],
"parameters": {
"model": {
"__rl": true,
"mode": "list",
"value": "gpt-4o-mini"
},
"options": []
},
"credentials": {
"openAiApi": {
"id": "uFPD9I4pWJ4xUVf7",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "d25bf3ea-0de4-4317-9205-651f8a1a6ba8",
"name": "Basic LLM Chain",
"type": "@n8n\/n8n-nodes-langchain.chainLlm",
"position": [
1060,
40
],
"parameters": {
"text": "={{ $json.text }}",
"messages": {
"messageValues": [
{
"message": "=Okay, I've further refined the system prompt to include only the \"content\" and \"priority\" fields in the JSON output for the Todoist tool. Here's the updated prompt:\n\n**System Prompt:**\n\n```\nYou are an AI agent acting as a project management assistant. The user will provide you with a task or project description. Your job is to break down this task or project into smaller, manageable sub-tasks. You will then format each sub-task into a JSON object suitable for input to the \"Todoist\" tool and provide these JSON objects in a list.\n\n**Requirements:**\n\n1. **Sub-Task Decomposition:** Break down the task or project provided by the user into logical and actionable sub-tasks. Each sub-task should be self-contained, completable, and measurable.\n2. **JSON Format for Todoist:** Format each sub-task as a JSON object with the following structure:\n\n ```json\n {\n \"content\": \"[Task Description]\",\n \"priority\": [Priority Level (1-4, where 4 is highest)]\n }\n ```\n\n * `content`: A clear and concise description of the task.\n * `priority`: An integer representing the task priority, ranging from 1 (lowest) to 4 (highest). Consider the importance and urgency of the task when assigning the priority.\n\n3. **Tool Usage - Todoist JSON Output:** After decomposing the project into sub-tasks, you **MUST** format each sub-task into the JSON structure specified above and present all the JSON objects in a Python list. This list will be the direct input to the \"Todoist\" tool.\n\n4. **Contextual Understanding:** Fully understand the context of the task or project provided by the user. If necessary, ask for additional information or clarification to resolve any ambiguities.\n\n5. **Limitations:**\n\n * Avoid very general or abstract sub-tasks.\n * Ensure that each sub-task is completable and measurable.\n * When creating sub-tasks, consider the user's skills and resources.\n * Ensure all the output is valid JSON format within a python list\n\n**User Input:**\n\nThe user will provide you with a task or project description in the following format:\n\n```\nProject Description: [User's Entered Task or Project Description]\n```\n\n**Example:**\n\n**User Input:**\n\n```\nProject Description: Plan a team offsite.\n```\n\n**LLM Response:**\n\n```python\n[\n {\n \"content\": \"Research potential offsite locations.\",\n \"priority\": 3\n },\n {\n \"content\": \"Determine the budget for the offsite.\",\n \"priority\": 4\n },\n {\n \"content\": \"Send out a survey to gather team preferences.\",\n \"priority\": 3\n },\n {\n \"content\": \"Book the chosen venue.\",\n \"priority\": 4\n },\n {\n \"content\": \"Plan team-building activities.\",\n \"priority\": 2\n }\n]\n```\n\n**Key Changes and Explanations:**\n\n* **Simplified JSON Structure:** The JSON object now only includes `content` and `priority`.\n* **Example Updated:** The example response reflects the simplified JSON format.\n* **Conciseness:** The prompt is now more concise, focusing only on the necessary fields.\n\n**Jinja2 Template Version**\n\n```python\nfrom jinja2 import Template\n\ntemplate_string = \"\"\"\nYou are an AI agent acting as a project management assistant. The user will provide you with a task or project description. Your job is to break down this task or project into smaller, manageable sub-tasks. You will then format each sub-task into a JSON object suitable for input to the \"Todoist\" tool and provide these JSON objects in a list.\n\n**Requirements:**\n\n1. **Sub-Task Decomposition:** Break down the task or project provided by the user into logical and actionable sub-tasks. Each sub-task should be self-contained, completable, and measurable.\n2. **JSON Format for Todoist:** Format each sub-task as a JSON object with the following structure:\n\n ```json\n {\n \"content\": \"[Task Description]\",\n \"priority\": [Priority Level (1-4, where 4 is highest)]\n }\n ```\n\n * `content`: A clear and concise description of the task.\n * `priority`: An integer representing the task priority, ranging from 1 (lowest) to 4 (highest). Consider the importance and urgency of the task when assigning the priority.\n\n3. **Tool Usage - Todoist JSON Output:** After decomposing the project into sub-tasks, you **MUST** format each sub-task into the JSON structure specified above and present all the JSON objects in a Python list. This list will be the direct input to the \"Todoist\" tool.\n\n4. **Contextual Understanding:** Fully understand the context of the task or project provided by the user. If necessary, ask for additional information or clarification to resolve any ambiguities.\n\n5. **Limitations:**\n\n * Avoid very general or abstract sub-tasks.\n * Ensure that each sub-task is completable and measurable.\n * When creating sub-tasks, consider the user's skills and resources.\n * Ensure all the output is valid JSON format within a python list\n\n**User Input:**\n\nThe user will provide you with a task or project description in the following format:\n\n```\nProject Description: {{ project_description }}\n```\n\n**Example:**\n\n**User Input:**\n\n```\nProject Description: Plan a team offsite.\n```\n\n**LLM Response:**\n\n```python\n[\n {\n \"content\": \"Research potential offsite locations.\",\n \"priority\": 3\n },\n {\n \"content\": \"Determine the budget for the offsite.\",\n \"priority\": 4\n },\n {\n \"content\": \"Send out a survey to gather team preferences.\",\n \"priority\": 3\n },\n {\n \"content\": \"Book the chosen venue.\",\n \"priority\": 4\n },\n {\n \"content\": \"Plan team-building activities.\",\n \"priority\": 2\n }\n]\n```\n\"\"\"\n\ntemplate = Template(template_string)\n\n# Example Usage\nproject_description = \"Plan a team offsite.\"\nprompt = template.render(project_description=project_description)\n\nprint(prompt)\n```\n \n"
}
]
},
"promptType": "define",
"hasOutputParser": true
},
"typeVersion": 1.5
},
{
"id": "ddfe59c5-574c-470b-b2cc-efa05da74972",
"name": "Receive Telegram Messages",
"type": "n8n-nodes-base.telegramTrigger",
"position": [
-220,
-100
],
"webhookId": "4e2cd560-ae4e-4ed7-a8ea-984518404e51",
"parameters": {
"updates": [
"message"
],
"additionalFields": []
},
"credentials": {
"telegramApi": {
"id": "lff3pLERRdQmkmeV",
"name": "Telegram account"
}
},
"typeVersion": 1.1
},
{
"id": "23f2cedd-bcd2-4a94-acc1-8829b30553dc",
"name": "Voice or Text?",
"type": "n8n-nodes-base.switch",
"position": [
140,
-20
],
"parameters": {
"rules": {
"values": [
{
"outputKey": "Audio",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "af30c479-4542-405f-b315-37c50c4e2bef",
"operator": {
"type": "string",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{ $json.message.voice.file_id }}",
"rightValue": ""
}
]
},
"renameOutput": true
},
{
"outputKey": "Text",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "a3ca8cd4-fbb2-40b5-829a-24724f2fbc85",
"operator": {
"type": "string",
"operation": "exists",
"singleValue": true
},
"leftValue": "={{ $json.message.text || \"\" }}",
"rightValue": ""
}
]
},
"renameOutput": true
},
{
"outputKey": "Error",
"conditions": {
"options": {
"version": 2,
"leftValue": "",
"caseSensitive": true,
"typeValidation": "strict"
},
"combinator": "and",
"conditions": [
{
"id": "9bcfdee0-2f09-4037-a7b9-689ef392371d",
"operator": {
"type": "string",
"operation": "exists",
"singleValue": true
},
"leftValue": "error",
"rightValue": ""
}
]
},
"renameOutput": true
}
]
},
"options": []
},
"typeVersion": 3.2
},
{
"id": "128e8268-a256-4256-8757-9ece8be86d75",
"name": "Fetch Voice Message",
"type": "n8n-nodes-base.telegram",
"position": [
500,
-120
],
"webhookId": "23645237-4943-4c32-b18c-97c410cc3409",
"parameters": {
"fileId": "={{ $json.message.voice.file_id }}",
"resource": "file"
},
"credentials": {
"telegramApi": {
"id": "lff3pLERRdQmkmeV",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "d8219ba5-bb33-44f5-a9a2-65fd16be335b",
"name": "Transcribe Voice to Text",
"type": "@n8n\/n8n-nodes-langchain.openAi",
"position": [
720,
-120
],
"parameters": {
"options": [],
"resource": "audio",
"operation": "translate"
},
"credentials": {
"openAiApi": {
"id": "uFPD9I4pWJ4xUVf7",
"name": "OpenAi account"
}
},
"typeVersion": 1.8
},
{
"id": "0c5f5568-fd14-4c65-8661-ebc5803158ce",
"name": "Prepare for LLM",
"type": "n8n-nodes-base.set",
"position": [
620,
100
],
"parameters": {
"options": [],
"assignments": {
"assignments": [
{
"id": "b324a329-3c49-4f7f-b683-74331b7fe7f8",
"name": "=text",
"type": "string",
"value": "={{$json.message.text}}"
}
]
}
},
"typeVersion": 3.4
},
{
"id": "76ed8f5c-59f7-4cb9-9e59-25ac7e9e8c60",
"name": "Extract Tasks",
"type": "@n8n\/n8n-nodes-langchain.outputParserStructured",
"position": [
1220,
260
],
"parameters": {
"jsonSchemaExample": " {\n \"content\": \"Send out invitations.\",\n \"priority\": 3\n }"
},
"typeVersion": 1.2
},
{
"id": "7d0dbcb7-aac1-4eea-8f0b-6173148bfd3f",
"name": "Create Todoist Tasks",
"type": "n8n-nodes-base.todoist",
"position": [
1620,
40
],
"parameters": {
"content": "={{ $json.output.content }}",
"options": {
"priority": "={{ $json.output.priority }}"
},
"project": {
"__rl": true,
"mode": "list",
"value": "2349786654",
"cachedResultName": "Task"
}
},
"credentials": {
"todoistApi": {
"id": "yqSn5VBXyA4R6hgt",
"name": "Todoist account"
}
},
"typeVersion": 2.1
},
{
"id": "544b3f63-8ac1-4f81-9c24-943df16d9324",
"name": "Send Confirmation",
"type": "n8n-nodes-base.telegram",
"position": [
1880,
40
],
"webhookId": "5699aecd-e061-4b7f-af7b-4a23eb7201c6",
"parameters": {
"text": "=Task : {{ $json.content }} Task Link :{{ $json.url }}",
"chatId": "={{ $('Receive Telegram Messages').item.json.message.chat.id }}",
"additionalFields": []
},
"credentials": {
"telegramApi": {
"id": "lff3pLERRdQmkmeV",
"name": "Telegram account"
}
},
"typeVersion": 1.2
},
{
"id": "b244f935-3047-4581-84ac-b01b2f962c1d",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-260,
-240
],
"parameters": {
"width": 260,
"height": 320,
"content": " \n**This workflow listens for incoming voice or text messages from Telegram users.** "
},
"typeVersion": 1
},
{
"id": "fa99930d-8e75-4f1e-aa9b-47c38e611538",
"name": "Sticky Note3",
"type": "n8n-nodes-base.stickyNote",
"position": [
440,
-220
],
"parameters": {
"width": 460,
"height": 260,
"content": " **Voice messages are fetched from Telegram and transcribed into text using OpenAI's Whisper API.** "
},
"typeVersion": 1
},
{
"id": "beb460c9-0412-40c4-a3cf-76660eb0e1b8",
"name": "Sticky Note4",
"type": "n8n-nodes-base.stickyNote",
"position": [
1000,
-60
],
"parameters": {
"width": 380,
"height": 440,
"content": " \n**The LLM (OpenAI Chat Model) analyzes the text and breaks it down into tasks and sub-tasks, formatted for Todoist.** "
},
"typeVersion": 1
}
],
"pinData": [],
"connections": {
"Extract Tasks": {
"ai_outputParser": [
[
{
"node": "Basic LLM Chain",
"type": "ai_outputParser",
"index": 0
}
]
]
},
"Voice or Text?": {
"main": [
[
{
"node": "Fetch Voice Message",
"type": "main",
"index": 0
}
],
[
{
"node": "Prepare for LLM",
"type": "main",
"index": 0
}
]
]
},
"Basic LLM Chain": {
"main": [
[
{
"node": "Create Todoist Tasks",
"type": "main",
"index": 0
}
]
]
},
"Prepare for LLM": {
"main": [
[
{
"node": "Basic LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "Basic LLM Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Fetch Voice Message": {
"main": [
[
{
"node": "Transcribe Voice to Text",
"type": "main",
"index": 0
}
]
]
},
"Create Todoist Tasks": {
"main": [
[
{
"node": "Send Confirmation",
"type": "main",
"index": 0
}
]
]
},
"Transcribe Voice to Text": {
"main": [
[
{
"node": "Basic LLM Chain",
"type": "main",
"index": 0
}
]
]
},
"Receive Telegram Messages": {
"main": [
[
{
"node": "Voice or Text?",
"type": "main",
"index": 0
}
]
]
}
}
}
Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...
Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...
Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...