Customer Sentiment Analysis

Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8n/langchain.embeddingsCohere, @n8n/langchain.vectorStorePinecone

10 vues
1 copies
Automatisation

Documentation Complète

📋 Customer Sentiment Analysis

Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8n/langchain.embeddingsCohere, @n8n/langchain.vectorStorePinecone

🔧 Composition du workflow

Nombre total de nodes : 12

🚀 Déclencheurs
  • Webhook Trigger
⚡ Actions
  • Sticky Note
  • Text Splitter
  • Embeddings
  • Pinecone Insert
  • Pinecone Query
  • Vector Tool
  • Window Memory
  • Chat Model
  • RAG Agent
  • Append Sheet
  • Slack Alert
🔗 Services intégrés
  • Webhook
  • Google Sheets
  • Slack

🔄 Flux de données

Le workflow contient 11 connexion(s) entre les nodes, définissant le flux de données et l'ordre d'exécution.

💡 Utilisation

  1. Importez ce workflow dans votre instance n8n
  2. Configurez les credentials nécessaires pour chaque service
  3. Adaptez les paramètres selon vos besoins
  4. Testez le workflow avant de l'activer
📝 Note : Cette documentation a été générée automatiquement. Pour une analyse plus détaillée, configurez l'API OpenAI dans les paramètres système.

Structure JSON

Voir le code JSON complet
{
    "name": "Customer Sentiment Analysis",
    "nodes": [
        {
            "parameters": {
                "content": "Placeholder for Customer Sentiment Analysis",
                "height": 530,
                "width": 1100,
                "color": 5
            },
            "id": "9432cbf3-839c-415b-bbad-164cacd8f761",
            "name": "Sticky Note",
            "type": "n8n-nodes-base.stickyNote",
            "typeVersion": 1,
            "position": [
                -480,
                -240
            ]
        },
        {
            "parameters": {
                "httpMethod": "POST",
                "path": "customer-sentiment-analysis"
            },
            "id": "deec2c7d-52f6-41d1-b6c9-f2f68cc2db9e",
            "name": "Webhook Trigger",
            "type": "n8n-nodes-base.webhook",
            "typeVersion": 1,
            "position": [
                -300,
                0
            ]
        },
        {
            "parameters": {
                "chunkSize": 400,
                "chunkOverlap": 40
            },
            "id": "c999cc42-bc54-402b-8a6d-e8c924c27332",
            "name": "Text Splitter",
            "type": "@n8n\/n8n-nodes-langchain.textSplitterCharacterTextSplitter",
            "typeVersion": 1,
            "position": [
                -130,
                0
            ]
        },
        {
            "parameters": {
                "model": "embed-english-v3.0",
                "options": []
            },
            "id": "9c230e35-adf4-49a7-a98e-c13dfa1c4e3d",
            "name": "Embeddings",
            "type": "@n8n\/n8n-nodes-langchain.embeddingsCohere",
            "typeVersion": 1,
            "position": [
                70,
                0
            ],
            "credentials": {
                "cohereApi": {
                    "id": "COHERE_API",
                    "name": "Cohere"
                }
            }
        },
        {
            "parameters": {
                "mode": "insert",
                "options": [],
                "pineconeIndex": {
                    "__rl": true,
                    "value": "customer_sentiment_analysis",
                    "mode": "list",
                    "cachedResultName": "customer_sentiment_analysis"
                }
            },
            "id": "4b1cbbe7-ae91-4cbc-9b7d-106e8def867f",
            "name": "Pinecone Insert",
            "type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
            "typeVersion": 1,
            "position": [
                270,
                0
            ],
            "credentials": {
                "pineconeApi": {
                    "id": "PINECONE_API",
                    "name": "Pinecone account"
                }
            }
        },
        {
            "parameters": {
                "pineconeIndex": {
                    "__rl": true,
                    "value": "customer_sentiment_analysis",
                    "mode": "list",
                    "cachedResultName": "customer_sentiment_analysis"
                }
            },
            "id": "2051fbc6-2275-4529-bcc4-7ef84d05beed",
            "name": "Pinecone Query",
            "type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
            "typeVersion": 1,
            "position": [
                270,
                -180
            ],
            "credentials": {
                "pineconeApi": {
                    "id": "PINECONE_API",
                    "name": "Pinecone account"
                }
            }
        },
        {
            "parameters": {
                "name": "Pinecone",
                "description": "Vector context"
            },
            "id": "24603a00-5522-415e-b4c8-d80889678355",
            "name": "Vector Tool",
            "type": "@n8n\/n8n-nodes-langchain.toolVectorStore",
            "typeVersion": 1,
            "position": [
                450,
                -180
            ]
        },
        {
            "parameters": [],
            "id": "e22fb094-3cc2-492f-95f7-608b93e89409",
            "name": "Window Memory",
            "type": "@n8n\/n8n-nodes-langchain.memoryBufferWindow",
            "typeVersion": 1.3,
            "position": [
                450,
                -40
            ]
        },
        {
            "parameters": {
                "options": []
            },
            "id": "3116ece9-b801-47f1-82fb-192574cedea1",
            "name": "Chat Model",
            "type": "@n8n\/n8n-nodes-langchain.lmChatAnthropic",
            "typeVersion": 1,
            "position": [
                450,
                -340
            ],
            "credentials": {
                "anthropicApi": {
                    "id": "ANTHROPIC_API",
                    "name": "Anthropic"
                }
            }
        },
        {
            "parameters": {
                "promptType": "define",
                "text": "Handle data",
                "options": {
                    "systemMessage": "You are an assistant for Customer Sentiment Analysis"
                }
            },
            "id": "f94f99f3-4f7b-49d4-8432-b156ca31d831",
            "name": "RAG Agent",
            "type": "@n8n\/n8n-nodes-langchain.agent",
            "typeVersion": 1,
            "position": [
                720,
                -40
            ]
        },
        {
            "parameters": {
                "operation": "append",
                "documentId": {
                    "__rl": true,
                    "value": "SHEET_ID",
                    "mode": "list",
                    "cachedResultName": "Customer Sentiment Analysis"
                },
                "sheetName": {
                    "__rl": true,
                    "value": "Log",
                    "mode": "list",
                    "cachedResultName": "Log"
                },
                "columns": {
                    "mappingMode": "defineBelow",
                    "value": "Status",
                    "schema": []
                }
            },
            "id": "50ab5f32-d0a4-49e3-a3e3-a896b94ec7a0",
            "name": "Append Sheet",
            "type": "n8n-nodes-base.googleSheets",
            "typeVersion": 4,
            "position": [
                930,
                -40
            ],
            "credentials": {
                "googleSheetsOAuth2Api": {
                    "id": "SHEETS_API",
                    "name": "Google Sheets account"
                }
            }
        },
        {
            "parameters": {
                "channel": "#alerts",
                "text": "Customer Sentiment Analysis error: {$json.error.message}"
            },
            "id": "59c37726-aac9-49be-a899-ed4dc6563e33",
            "name": "Slack Alert",
            "type": "n8n-nodes-base.slack",
            "typeVersion": 1,
            "position": [
                930,
                120
            ],
            "credentials": {
                "slackApi": {
                    "id": "SLACK_API",
                    "name": "Slack"
                }
            }
        }
    ],
    "connections": {
        "Webhook Trigger": {
            "main": [
                [
                    {
                        "node": "Text Splitter",
                        "type": "main",
                        "index": 0
                    },
                    {
                        "node": "Window Memory",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Text Splitter": {
            "main": [
                [
                    {
                        "node": "Embeddings",
                        "type": "main",
                        "index": 0
                    }
                ]
            ],
            "ai_textSplitter": [
                [
                    {
                        "node": "Pinecone Insert",
                        "type": "ai_textSplitter",
                        "index": 0
                    }
                ]
            ]
        },
        "Embeddings": {
            "ai_embedding": [
                [
                    {
                        "node": "Pinecone Insert",
                        "type": "ai_embedding",
                        "index": 0
                    },
                    {
                        "node": "Pinecone Query",
                        "type": "ai_embedding",
                        "index": 0
                    }
                ]
            ]
        },
        "Pinecone Insert": {
            "ai_document": [
                []
            ]
        },
        "Pinecone Query": {
            "ai_vectorStore": [
                [
                    {
                        "node": "Vector Tool",
                        "type": "ai_vectorStore",
                        "index": 0
                    }
                ]
            ]
        },
        "Vector Tool": {
            "ai_tool": [
                [
                    {
                        "node": "RAG Agent",
                        "type": "ai_tool",
                        "index": 0
                    }
                ]
            ]
        },
        "Window Memory": {
            "ai_memory": [
                [
                    {
                        "node": "RAG Agent",
                        "type": "ai_memory",
                        "index": 0
                    }
                ]
            ]
        },
        "Chat Model": {
            "ai_languageModel": [
                [
                    {
                        "node": "RAG Agent",
                        "type": "ai_languageModel",
                        "index": 0
                    }
                ]
            ]
        },
        "RAG Agent": {
            "main": [
                [
                    {
                        "node": "Append Sheet",
                        "type": "main",
                        "index": 0
                    }
                ]
            ],
            "onError": [
                [
                    {
                        "node": "Slack Alert",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        }
    },
    "settings": {
        "executionOrder": "v1"
    },
    "triggerCount": 1
}
                                

Workflows Similaires

Public Form Auto Triage

Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...

Image Captioning

Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...

Daily Content Ideas

Workflow automatisé avec 12 nodes incluant : stickyNote, webhook, @n8n/langchain.textSplitterCharacterTextSplitter, @n8...