Optimisation de la Performance des Modèles LLM avec n8n

Ce workflow n8n facilite l'analyse et l'optimisation des réponses des modèles de langage LLM. En intégrant LM Studio, il permet d'extraire et de tester plusieurs modèles simultanément, mesurant des métriques telles que la lisibilité et le temps de réponse. Les résultats sont automatiquement enregistrés dans Google Sheets pour une analyse approfondie. Ce processus automatisé améliore considérablement l'efficacité du test de modèles en fournissant des insights précieux sur la performance des LLM, permettant aux entreprises d'affiner leurs modèles pour obtenir des réponses plus précises et adaptées.

157,283 vues
36,643 copies
Automatisation

Documentation Complète

📋 Optimisation de la Performance des Modèles LLM avec n8n

💡 Description

Ce workflow n8n facilite l'analyse et l'optimisation des réponses des modèles de langage LLM. En intégrant LM Studio, il permet d'extraire et de tester plusieurs modèles simultanément, mesurant des métriques telles que la lisibilité et le temps de réponse. Les résultats sont automatiquement enregistrés dans Google Sheets pour une analyse approfondie. Ce processus automatisé améliore considérablement l'efficacité du test de modèles en fournissant des insights précieux sur la performance des LLM, permettant aux entreprises d'affiner leurs modèles pour obtenir des réponses plus précises et adaptées.

📈 Impact & ROI: Ce workflow optimise l'évaluation et l'ajustement des modèles LLM, augmentant ainsi la précision et la pertinence des réponses générées, ce qui peut réduire les coûts opérationnels tout en améliorant l'expérience utilisateur.

🚀 Fonctionnalités Clés

  • ✅ Analyse automatique de la lisibilité des réponses LLM
  • ✅ Intégration fluide avec Google Sheets pour le suivi des résultats
  • ✅ Gain de temps grâce à l'automatisation complète du processus d'évaluation
  • ✅ Possibilité d'ajuster facilement les paramètres des modèles pour une optimisation précise

📊 Architecture Technique

21
Nodes
11
Connexions
3
Services

🔌 Services Intégrés

LM StudioGoogle SheetsOpenAI

🔧 Composition du Workflow

NodeTypeDescription
Sticky NotestickyNoteTraitement des données
Get ModelshttpRequestRequête HTTP vers une API externe
Sticky Note1stickyNoteTraitement des données
When chat message received@n8n/n8n-nodes-langchain.chatTriggerTraitement des données
Sticky Note2stickyNoteTraitement des données
Sticky Note3stickyNoteTraitement des données
Get timeDifferencedateTimeTraitement des données
Sticky Note4stickyNoteTraitement des données
Sticky Note5stickyNoteTraitement des données
Sticky Note6stickyNoteTraitement des données
Run Model with Dunamic Inputs@n8n/n8n-nodes-langchain.lmChatOpenAiTraitement des données
Analyze LLM Response MetricscodeTraitement des données
Save Results to Google SheetsgoogleSheetsTraitement des données
Capture End TimedateTimeTraitement des données
Capture Start TimedateTimeTraitement des données
Prepare Data for AnalysissetTraitement des données
Extract Model IDsto Run SeparatelysplitOutDivision des données en plusieurs branches
Sticky Note7stickyNoteTraitement des données
Add System PromptsetTraitement des données
LLM Response Analysis@n8n/n8n-nodes-langchain.chainLlmTraitement des données
Sticky Note8stickyNoteTraitement des données

📖 Guide d'Implémentation

  1. Import du workflow: Téléchargez le fichier JSON et importez-le dans votre instance n8n
  2. Configuration des credentials: Configurez les accès pour chaque service utilisé
  3. Personnalisation: Adaptez les paramètres selon vos besoins spécifiques
  4. Test: Exécutez le workflow en mode test pour vérifier le bon fonctionnement
  5. Activation: Activez le workflow pour une exécution automatique

🏷️ Tags

LLMAnalyseGoogle SheetsAutomatisation

Structure JSON

Voir le code JSON complet
{
    "id": "WulUYgcXvako9hBy",
    "meta": {
        "instanceId": "d6b86682c7e02b79169c1a61ad0484dcda5bc8b0ea70f1a95dac239c2abfd057",
        "templateCredsSetupCompleted": true
    },
    "name": "Testing Mulitple Local LLM with LM Studio",
    "tags": [
        {
            "id": "RkTiZTdbLvr6uzSg",
            "name": "Training",
            "createdAt": "2024-06-18T16:09:35.806Z",
            "updatedAt": "2024-06-18T16:09:35.806Z"
        },
        {
            "id": "W3xdiSeIujD7XgBA",
            "name": "Template",
            "createdAt": "2024-06-18T22:15:34.874Z",
            "updatedAt": "2024-06-18T22:15:34.874Z"
        }
    ],
    "nodes": [
        {
            "id": "08c457ef-5c1f-46d8-a53e-f492b11c83f9",
            "name": "Sticky Note",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                1600,
                420
            ],
            "parameters": {
                "color": 6,
                "width": 478.38709677419376,
                "height": 347.82258064516134,
                "content": "## 🧠Text Analysis\n### Readability Score Ranges:\nWhen testing model responses, readability scores can range across different levels. Here’s a breakdown:\n\n- **90–100**: Very easy to read (5th grade or below)\n- **80–89**: Easy to read (6th grade)\n- **70–79**: Fairly easy to read (7th grade)\n- **60–69**: Standard (8th to 9th grade)\n- **50–59**: Fairly difficult (10th to 12th grade)\n- **30–49**: Difficult (College)\n- **0–29**: Very difficult (College graduate)\n- **Below 0**: Extremely difficult (Post-graduate level)\n"
            },
            "typeVersion": 1
        },
        {
            "id": "7801734c-5eb9-4abd-b234-e406462931f7",
            "name": "Get Models",
            "type": "n8n-nodes-base.httpRequest",
            "onError": "continueErrorOutput",
            "position": [
                20,
                180
            ],
            "parameters": {
                "url": "http:\/\/192.168.1.179:1234\/v1\/models",
                "options": {
                    "timeout": 10000,
                    "allowUnauthorizedCerts": false
                }
            },
            "typeVersion": 4.2
        },
        {
            "id": "5ee93d9a-ad2e-4ea9-838e-2c12a168eae6",
            "name": "Sticky Note1",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                -140,
                -100
            ],
            "parameters": {
                "width": 377.6129032258063,
                "height": 264.22580645161304,
                "content": "##  ⚙️ 2. Update Local IP\nUpdate the **'Base URL'** `http:\/\/192.168.1.1:1234\/v1\/models` in the workflow to match the IP of your LM Studio server. (Running LM Server)[https:\/\/lmstudio.ai\/docs\/basics\/server]\n\nThis node will query the LM Studio server to retrieve a list of all loaded model IDs at the time of the query. If you change or add models to LM Studio, you’ll need to rerun this node to get an updated list of active LLMs.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "f2b6a6ed-0ef1-4f2c-8350-9abd59d08e61",
            "name": "When chat message received",
            "type": "@n8n\/n8n-nodes-langchain.chatTrigger",
            "position": [
                -300,
                180
            ],
            "webhookId": "39c3c6d5-ea06-4faa-b0e3-4e77a05b0297",
            "parameters": {
                "options": []
            },
            "typeVersion": 1.1
        },
        {
            "id": "dbaf0ad1-9027-4317-a996-33a3fcc9e258",
            "name": "Sticky Note2",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                -740,
                200
            ],
            "parameters": {
                "width": 378.75806451612857,
                "height": 216.12903225806457,
                "content": "## 🛠️1. Setup - LM Studio\nFirst, download and install [LM Studio](https:\/\/lmstudio.ai\/). Identify which LLM models you want to use for testing.\n\nNext, the selected models are loaded into the server capabilities to prepare them for testing. For a detailed guide on how to set up multiple models, refer to the [LM Studio Basics](https:\/\/lmstudio.ai\/docs\/basics) documentation.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "36770fd1-7863-4c42-a68d-8d240ae3683b",
            "name": "Sticky Note3",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                360,
                400
            ],
            "parameters": {
                "width": 570.0000000000002,
                "height": 326.0645161290325,
                "content": "##  3. 💡Update the LM Settings\n\nFrom here, you can modify the following\n parameters to fine-tune model behavior:\n\n- **Temperature**: Controls randomness. Higher values (e.g., 1.0) produce more diverse results, while lower values (e.g., 0.2) make responses more focused and deterministic.\n- **Top P**: Adjusts nucleus sampling, where the model considers only a subset of probable tokens. A lower value (e.g., 0.5) narrows the response range.\n- **Presence Penalty**: Penalizes new tokens based on their presence in the input, encouraging the model to generate more varied responses.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "6b36f094-a3bf-4ff7-9385-4f7a2c80d54f",
            "name": "Get timeDifference",
            "type": "n8n-nodes-base.dateTime",
            "position": [
                1600,
                160
            ],
            "parameters": {
                "endDate": "={{ $json.endDateTime }}",
                "options": [],
                "operation": "getTimeBetweenDates",
                "startDate": "={{ $('Capture Start Time').item.json.startDateTime }}"
            },
            "typeVersion": 2
        },
        {
            "id": "a0b8f29d-2f2f-4fcf-a54a-dff071e321e5",
            "name": "Sticky Note4",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                1900,
                -260
            ],
            "parameters": {
                "width": 304.3225806451618,
                "height": 599.7580645161281,
                "content": "##  📊4. Create Google Sheet (Optional)\n1. First, create a Google Sheet with the following headers:\n   - Prompt\n   - Time Sent\n   - Time Received\n   - Total Time Spent\n   - Model\n   - Response\n   - Readability Score\n   - Average Word Length\n   - Word Count\n   - Sentence Count\n   - Average Sentence Length\n2. After creating the sheet, update the corresponding Google Sheets node in the workflow to map the data fields correctly.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "d376a5fb-4e07-42a3-aa0c-8ccc1b9feeb7",
            "name": "Sticky Note5",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                -760,
                -200
            ],
            "parameters": {
                "color": 5,
                "width": 359.2903225806448,
                "height": 316.9032258064518,
                "content": "## 🏗️Setup Steps\n1. **Download and Install LM Studio**: Ensure LM Studio is correctly installed on your machine.\n2. **Update the Base URL**: Replace the base URL with the IP address of your LLM instance. Ensure the connection is established.\n3. **Configure LLM Settings**: Verify that your LLM models are properly set up and configured in LM Studio.\n4. **Create a Google Sheet**: Set up a Google Sheet with the necessary headers (Prompt, Time Sent, Time Received, etc.) to track your testing results.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "b21cad30-573e-4adf-a1d0-f34cf9628819",
            "name": "Sticky Note6",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                560,
                -160
            ],
            "parameters": {
                "width": 615.8064516129025,
                "height": 272.241935483871,
                "content": "## 📖Prompting Multiple LLMs\n\nWhen testing for specific outcomes (such as conciseness or readability), you can add a **System Prompt** in the LLM Chain to guide the models' responses.\n\n**System Prompt Suggestion**:\n- Focus on ensuring that responses are concise, clear, and easily understandable by a 5th-grade reading level. \n- This prompt will help you compare models based on how well they meet readability standards and stay on point.\n  \nAdjust the prompt to fit your desired testing criteria.\n"
            },
            "typeVersion": 1
        },
        {
            "id": "dd5f7e7b-bc69-4b67-90e6-2077b6b93148",
            "name": "Run Model with Dunamic Inputs",
            "type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
            "position": [
                1020,
                400
            ],
            "parameters": {
                "model": "={{ $node['Extract Model IDsto Run Separately'].json.id }}",
                "options": {
                    "topP": 1,
                    "baseURL": "http:\/\/192.168.1.179:1234\/v1",
                    "timeout": 250000,
                    "temperature": 1,
                    "presencePenalty": 0
                }
            },
            "credentials": {
                "openAiApi": {
                    "id": "LBE5CXY4yeWrZCsy",
                    "name": "OpenAi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "a0ee6c9a-cf76-4633-9c43-a7dc10a1f73e",
            "name": "Analyze LLM Response Metrics",
            "type": "n8n-nodes-base.code",
            "position": [
                2000,
                160
            ],
            "parameters": {
                "jsCode": "\/\/ Get the input data from n8n\nconst inputData = items.map(item => item.json);\n\n\/\/ Function to count words in a string\nfunction countWords(text) {\n    return text.trim().split(\/\\s+\/).length;\n}\n\n\/\/ Function to count sentences in a string\nfunction countSentences(text) {\n    const sentences = text.match(\/[^.!?]+[.!?]+\/g) || [];\n    return sentences.length;\n}\n\n\/\/ Function to calculate average sentence length\nfunction averageSentenceLength(text) {\n    const sentences = text.match(\/[^.!?]+[.!?]+\/g) || [];\n    const sentenceLengths = sentences.map(sentence => sentence.trim().split(\/\\s+\/).length);\n    const totalWords = sentenceLengths.reduce((acc, val) => acc + val, 0);\n    return sentenceLengths.length ? (totalWords \/ sentenceLengths.length) : 0;\n}\n\n\/\/ Function to calculate average word length\nfunction averageWordLength(text) {\n    const words = text.trim().split(\/\\s+\/);\n    const totalCharacters = words.reduce((acc, word) => acc + word.length, 0);\n    return words.length ? (totalCharacters \/ words.length) : 0;\n}\n\n\/\/ Function to calculate Flesch-Kincaid Readability Score\nfunction fleschKincaidReadability(text) {\n    \/\/ Split text into sentences (approximate)\n    const sentences = text.match(\/[^.!?]+[.!?]*[\\n]*\/g) || [];\n    \/\/ Split text into words\n    const words = text.trim().split(\/\\s+\/);\n    \/\/ Estimate syllable count by matching vowel groups\n    const syllableCount = (text.toLowerCase().match(\/[aeiouy]{1,2}\/g) || []).length;\n\n    const sentenceCount = sentences.length;\n    const wordCount = words.length;\n\n    \/\/ Avoid division by zero\n    if (wordCount === 0 || sentenceCount === 0) return 0;\n\n    const averageWordsPerSentence = wordCount \/ sentenceCount;\n    const averageSyllablesPerWord = syllableCount \/ wordCount;\n\n    \/\/ Flesch-Kincaid formula\n    return 206.835 - (1.015 * averageWordsPerSentence) - (84.6 * averageSyllablesPerWord);\n}\n\n\n\/\/ Prepare the result array for n8n output\nconst resultArray = [];\n\n\/\/ Loop through the input data and analyze each LLM response\ninputData.forEach(item => {\n    const llmResponse = item.llm_response;\n\n    \/\/ Perform the analyses\n    const wordCount = countWords(llmResponse);\n    const sentenceCount = countSentences(llmResponse);\n    const avgSentenceLength = averageSentenceLength(llmResponse);\n    const readabilityScore = fleschKincaidReadability(llmResponse);\n    const avgWordLength = averageWordLength(llmResponse);\n\n    \/\/ Structure the output to include original input and new calculated values\n    resultArray.push({\n        json: {\n            llm_response: item.llm_response,\n            prompt: item.prompt,\n            model: item.model,\n            start_time: item.start_time,\n            end_time: item.end_time,\n            time_diff: item.time_diff,\n            word_count: wordCount,\n            sentence_count: sentenceCount,\n            average_sent_length: avgSentenceLength,\n            readability_score: readabilityScore,\n            average_word_length: avgWordLength\n        }\n    });\n});\n\n\/\/ Return the result array to n8n\nreturn resultArray;\n"
            },
            "typeVersion": 2
        },
        {
            "id": "adef5d92-cb7e-417e-acbb-1a5d6c26426a",
            "name": "Save Results to Google Sheets",
            "type": "n8n-nodes-base.googleSheets",
            "position": [
                2180,
                160
            ],
            "parameters": {
                "columns": {
                    "value": {
                        "Model": "={{ $('Extract Model IDsto Run Separately').item.json.id }}",
                        "Prompt": "={{ $json.prompt }}",
                        "Response ": "={{ $('LLM Response Analysis').item.json.text }}",
                        "TIme Sent": "={{ $json.start_time }}",
                        "Word_count": "={{ $json.word_count }}",
                        "Sentence_count": "={{ $json.sentence_count }}",
                        "Time Recieved ": "={{ $json.end_time }}",
                        "Total TIme spent ": "={{ $json.time_diff }}",
                        "readability_score": "={{ $json.readability_score }}",
                        "Average_sent_length": "={{ $json.average_sent_length }}",
                        "average_word_length": "={{ $json.average_word_length }}"
                    },
                    "schema": [
                        {
                            "id": "Prompt",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "Prompt",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "TIme Sent",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "TIme Sent",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Time Recieved ",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "Time Recieved ",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Total TIme spent ",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "Total TIme spent ",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Model",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "Model",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Response ",
                            "type": "string",
                            "display": true,
                            "required": false,
                            "displayName": "Response ",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "readability_score",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "readability_score",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "average_word_length",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "average_word_length",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Word_count",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "Word_count",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Sentence_count",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "Sentence_count",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        },
                        {
                            "id": "Average_sent_length",
                            "type": "string",
                            "display": true,
                            "removed": false,
                            "required": false,
                            "displayName": "Average_sent_length",
                            "defaultMatch": false,
                            "canBeUsedToMatch": true
                        }
                    ],
                    "mappingMode": "defineBelow",
                    "matchingColumns": []
                },
                "options": [],
                "operation": "append",
                "sheetName": {
                    "__rl": true,
                    "mode": "list",
                    "value": "gid=0",
                    "cachedResultUrl": "https:\/\/docs.google.com\/spreadsheets\/d\/1GdoTjKOrhWOqSZb-AoLNlXgRGBdXKSbXpy-EsZaPGvg\/edit#gid=0",
                    "cachedResultName": "Sheet1"
                },
                "documentId": {
                    "__rl": true,
                    "mode": "list",
                    "value": "1GdoTjKOrhWOqSZb-AoLNlXgRGBdXKSbXpy-EsZaPGvg",
                    "cachedResultUrl": "https:\/\/docs.google.com\/spreadsheets\/d\/1GdoTjKOrhWOqSZb-AoLNlXgRGBdXKSbXpy-EsZaPGvg\/edit?usp=drivesdk",
                    "cachedResultName": "Teacking LLM Success"
                }
            },
            "credentials": {
                "googleSheetsOAuth2Api": {
                    "id": "DMnEU30APvssJZwc",
                    "name": "Google Sheets account"
                }
            },
            "typeVersion": 4.5
        },
        {
            "id": "2e147670-67af-4dde-8ba8-90b685238599",
            "name": "Capture End Time",
            "type": "n8n-nodes-base.dateTime",
            "position": [
                1380,
                160
            ],
            "parameters": {
                "options": [],
                "outputFieldName": "endDateTime"
            },
            "typeVersion": 2
        },
        {
            "id": "5a8d3334-b7f8-4f14-8026-055db795bb1f",
            "name": "Capture Start Time",
            "type": "n8n-nodes-base.dateTime",
            "position": [
                520,
                160
            ],
            "parameters": {
                "options": [],
                "outputFieldName": "startDateTime"
            },
            "typeVersion": 2
        },
        {
            "id": "c42d1748-a10d-4792-8526-5ea1c542eeec",
            "name": "Prepare Data for Analysis",
            "type": "n8n-nodes-base.set",
            "position": [
                1800,
                160
            ],
            "parameters": {
                "options": [],
                "assignments": {
                    "assignments": [
                        {
                            "id": "920ffdcc-2ae1-4ccb-bc54-049d9d84bd42",
                            "name": "llm_response",
                            "type": "string",
                            "value": "={{ $('LLM Response Analysis').item.json.text }}"
                        },
                        {
                            "id": "c3e70e1b-055c-4a91-aeb0-3d00d41af86d",
                            "name": "prompt",
                            "type": "string",
                            "value": "={{ $('When chat message received').item.json.chatInput }}"
                        },
                        {
                            "id": "cfa45a85-7e60-4a09-b1ed-f9ad51161254",
                            "name": "model",
                            "type": "string",
                            "value": "={{ $('Extract Model IDsto Run Separately').item.json.id }}"
                        },
                        {
                            "id": "a49758c8-4828-41d9-b1d8-4e64dc06920b",
                            "name": "start_time",
                            "type": "string",
                            "value": "={{ $('Capture Start Time').item.json.startDateTime }}"
                        },
                        {
                            "id": "6206be8f-f088-4c4d-8a84-96295937afe2",
                            "name": "end_time",
                            "type": "string",
                            "value": "={{ $('Capture End Time').item.json.endDateTime }}"
                        },
                        {
                            "id": "421b52f9-6184-4bfa-b36a-571e1ea40ce4",
                            "name": "time_diff",
                            "type": "string",
                            "value": "={{ $json.timeDifference.days }}"
                        }
                    ]
                }
            },
            "typeVersion": 3.4
        },
        {
            "id": "04679ba8-f13c-4453-99ac-970095bffc20",
            "name": "Extract Model IDsto Run Separately",
            "type": "n8n-nodes-base.splitOut",
            "position": [
                300,
                160
            ],
            "parameters": {
                "options": [],
                "fieldToSplitOut": "data"
            },
            "typeVersion": 1
        },
        {
            "id": "97cdd050-5538-47e1-a67a-ea6e90e89b19",
            "name": "Sticky Note7",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                2240,
                -160
            ],
            "parameters": {
                "width": 330.4677419354838,
                "height": 182.9032258064516,
                "content": "### Optional\nYou can just delete the google sheet node, and review the results by hand.  \n\nUtilizing the google sheet, allows you to provide mulitple prompts and review the analysis against all of those runs."
            },
            "typeVersion": 1
        },
        {
            "id": "5a1558ec-54e8-4860-b3db-edcb47c52413",
            "name": "Add System Prompt",
            "type": "n8n-nodes-base.set",
            "position": [
                740,
                160
            ],
            "parameters": {
                "options": [],
                "assignments": {
                    "assignments": [
                        {
                            "id": "fd48436f-8242-4c01-a7c3-246d28a8639f",
                            "name": "system_prompt",
                            "type": "string",
                            "value": "Ensure that messages are concise and to the point readable by a 5th grader."
                        }
                    ]
                },
                "includeOtherFields": true
            },
            "typeVersion": 3.4
        },
        {
            "id": "74df223b-17ab-4189-a171-78224522e1c7",
            "name": "LLM Response Analysis",
            "type": "@n8n\/n8n-nodes-langchain.chainLlm",
            "position": [
                1000,
                160
            ],
            "parameters": {
                "text": "={{ $('When chat message received').item.json.chatInput }}",
                "messages": {
                    "messageValues": [
                        {
                            "message": "={{ $json.system_prompt }}"
                        }
                    ]
                },
                "promptType": "define"
            },
            "typeVersion": 1.4
        },
        {
            "id": "65d8b0d3-7285-4c64-8ca5-4346e68ec075",
            "name": "Sticky Note8",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                380,
                780
            ],
            "parameters": {
                "color": 3,
                "width": 570.0000000000002,
                "height": 182.91935483870984,
                "content": "##  🚀Pro Tip \n\nIf you are getting strange results, ensure that you are Deleting the previous chat (next to the Chat Button) to ensure you aren't bleeding responses into the next chat. "
            },
            "typeVersion": 1
        }
    ],
    "active": false,
    "pinData": [],
    "settings": {
        "timezone": "America\/Denver",
        "callerPolicy": "workflowsFromSameOwner",
        "executionOrder": "v1",
        "saveManualExecutions": true
    },
    "versionId": "a80bee71-8e21-40ff-8803-42d38f316bfb",
    "connections": {
        "Get Models": {
            "main": [
                [
                    {
                        "node": "Extract Model IDsto Run Separately",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Capture End Time": {
            "main": [
                [
                    {
                        "node": "Get timeDifference",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Add System Prompt": {
            "main": [
                [
                    {
                        "node": "LLM Response Analysis",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Capture Start Time": {
            "main": [
                [
                    {
                        "node": "Add System Prompt",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Get timeDifference": {
            "main": [
                [
                    {
                        "node": "Prepare Data for Analysis",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "LLM Response Analysis": {
            "main": [
                [
                    {
                        "node": "Capture End Time",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Prepare Data for Analysis": {
            "main": [
                [
                    {
                        "node": "Analyze LLM Response Metrics",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "When chat message received": {
            "main": [
                [
                    {
                        "node": "Get Models",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Analyze LLM Response Metrics": {
            "main": [
                [
                    {
                        "node": "Save Results to Google Sheets",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Run Model with Dunamic Inputs": {
            "ai_languageModel": [
                [
                    {
                        "node": "LLM Response Analysis",
                        "type": "ai_languageModel",
                        "index": 0
                    }
                ]
            ]
        },
        "Extract Model IDsto Run Separately": {
            "main": [
                [
                    {
                        "node": "Capture Start Time",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        }
    }
}
                                

Workflows Similaires

Automatisez le Résumé de Vos Emails avec A.I. et Messagerie

Ce workflow n8n vous permet d'automatiser la gestion de vos emails en utilisant l'intelligence artificielle pour résume...

Automatisation de gestion des réunions Zoom et communication

Ce workflow est conçu pour automatiser le processus de planification et de gestion des réunions Zoom tout en assurant ...

Automatisez vos Tweets d'images humoristiques à 17h

Ce workflow n8n est conçu pour les professionnels des réseaux sociaux cherchant à automatiser leur contenu humoristiq...